Chemistry

Unit 0 - Introduction

Essential	Front Loading · Scientific Method · Lab procedures, skills, safety · Measurements: how to make a scientific measurement for volume, mass, density, temperature · Data Analysis: gathering data, making the graph (when appropriate), interpreting the data, writing a conclusion
Extension	 Unit conversions Scientific notation Precision and accuracy Lab report Formatting Graphing 101 recognize that elements have different properties than the compounds they form.
Eliminate	n/a

Unit 1

Essential	Matter What it is (definition) Classifications: pure (element and compounds)vs. mixtures (homo vs. hetero); States of matter (particle arrangement at molecular level and compare volume and shape) Properties: chemical and physical Changes: physical and chemical Atoms: Atomic Theory/History: Dalton, Thompson, Rutherford, Bohr and Schrodinger: Experimental evidence (Thompson & Rutherford)models and biggest contributions Atomic Structure and Isotopes: Subatomic particles (p+, no, e-): relative size, charge, mass, and location w/in atom Determining # of protons, neutrons and electrons in an average/neutral atom from info on Periodic table
	from info on Periodic table Atomic number, mass number Isotopes: definition; isotope notation (2 ways); determining # of protons and neutrons; atomic mass (what it means); determining most common isotope
	 Atomic number, mass number Isotopes: definition; isotope notation (2 ways); determining # of protons and

	from atomic mass. Nuclear: Radioactivity and Decay: Unstable nuclei: imbalance between EMF and SNF; will decay over time by emitting particles and/or energy Decay types: Alpha, beta, and gamma-penetrating power; mass and charge of particles; changing of identity of atom (alpha and beta) Half-life: defining; interpreting a half-life graph Fission and Fusion: Fission reactions vs. Fusion (what are they, in general?) Energy of fission/fusion vs. chemical reactions Effects of nuclear radiation on life Common Origin of the Naturally Occurring Elements: nuclear process (fusion) to form elements; location of formation (stars); relative abundances of elements;
Extension	 Other scientists and their contributions to atomic theory Calculating atomic mass from abundance data Band of stability Recognize and/or write nuclear equations Calculations involving half-life
Eliminate	

Unit 2

Essential	Light: waves, energy and photons
	Relationship between wavelength, frequency and energy
	Bohr Model: How light is emitting from an atom: electrons absorb
	energy, energy level transitions result in light emission.
	 energy absorbed and released is in "discrete" units (quanta)
	 Lab evidence to make connections between absorbing energy and
	releasing light; and using results to identify elements (flame tests and/or
	spectrum tubes)
	Relate color of light to energy of that light
	 Particle vs. wave nature of light
	Quantum Mechanical Model:
	 what is it: electrons are located in regions based on probability (orbits vs. orbitals)
	Energy levels, sublevels and orbitals: s,p,d and f sublevels/orbitals;
	shapes; # of electrons in each sublevel/orbital
	Electron configuration (up to argon) Pariadia Table:
	Periodic Table:
	determining # of valence electrons

	 organization: families (groups); periods; order of increasing atomic number types of elements: metals, non-metals, metalloids; properties and location on periodic table generalized trends: atomic radius; electronegativity and ionization energy reactivity and properities of elements (in a family): valence electrons
Extension	 calculating wavelength, frequency and energy photoelectric effect Heisenberg uncertainty principle electron configuration with d and f; orbital notation and noble gas configuration Lewis dot diagram for an element history of periodic table development electron affinity
Eliminate	

Unit 3

OTHE 5	
Essential	 Ionic Bonding and Ions ion formation and why; cations and anions; charges; what it is and why atoms bond this way. naming (IUPAC) and formula writing for ionic compounds, including transition metals and polyatomic ions properties of ionic compounds recognize that elements have different properties than the compounds they form
	they form. Covalent
	 what it is and why atoms bond this way. Lewis dot structures polar and nonpolar bonds naming (IUPAC) and formula writing for binary covalent compounds properties of covalent compounds recognize that elements have different properties than the compounds they form. Metallic
	what it is and why atoms bond this way.
	 properties of metallic compounds Comparing all three types of compounds: bond strength and electron behavior
	Intermolecular Forces and Kinetic Molecular Theory: • VSEPR theory • molecular polarity

	 IMFs: Dispersion Forces; Dipole-Dipole and Hydrogen bonding: define and types of molecules involved relate the relative strength to properties (melting point, surface tension; boiling point) Water and its amazing and special properties (hydrogen bonding)
Extension	memorization of polyatomic ionsalloys
Eliminate	hybridization